2015
Valera, Isabel; Ruiz, Francisco J R; Svensson, Lennart; Perez-Cruz, Fernando
A Bayesian Nonparametric Approach for Blind Multiuser Channel Estimation Artículo en actas
En: 2015 23rd European Signal Processing Conference (EUSIPCO), pp. 2766–2770, IEEE, Nice, 2015, ISBN: 978-0-9928-6263-3.
Resumen | Enlaces | BibTeX | Etiquetas: Bayes methods, Bayesian nonparametric, communication systems, factorial HMM, Hidden Markov models, machine-to-machine, multiuser communication, Receiving antennas, Signal to noise ratio, Transmitters
@inproceedings{Valera2015b,
title = {A Bayesian Nonparametric Approach for Blind Multiuser Channel Estimation},
author = {Isabel Valera and Francisco J R Ruiz and Lennart Svensson and Fernando Perez-Cruz},
url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=7362888 http://www.eurasip.org/Proceedings/Eusipco/Eusipco2015/papers/1570096659.pdf},
doi = {10.1109/EUSIPCO.2015.7362888},
isbn = {978-0-9928-6263-3},
year = {2015},
date = {2015-08-01},
booktitle = {2015 23rd European Signal Processing Conference (EUSIPCO)},
pages = {2766--2770},
publisher = {IEEE},
address = {Nice},
abstract = {In many modern multiuser communication systems, users are allowed to enter and leave the system at any given time. Thus, the number of active users is an unknown and time-varying parameter, and the performance of the system depends on how accurately this parameter is estimated over time. We address the problem of blind joint channel parameter and data estimation in a multiuser communication channel in which the number of transmitters is not known. For that purpose, we develop a Bayesian nonparametric model based on the Markov Indian buffet process and an inference algorithm that makes use of slice sampling and particle Gibbs with ancestor sampling. Our experimental results show that the proposed approach can effectively recover the data-generating process for a wide range of scenarios.},
keywords = {Bayes methods, Bayesian nonparametric, communication systems, factorial HMM, Hidden Markov models, machine-to-machine, multiuser communication, Receiving antennas, Signal to noise ratio, Transmitters},
pubstate = {published},
tppubtype = {inproceedings}
}
2009
Murillo-Fuentes, Juan Jose; Perez-Cruz, Fernando
Gaussian Process Regressors for Multiuser Detection in DS-CDMA Systems Artículo de revista
En: IEEE Transactions on Communications, vol. 57, no. 8, pp. 2339–2347, 2009, ISSN: 0090-6778.
Resumen | Enlaces | BibTeX | Etiquetas: analytical nonlinear multiuser detectors, code division multiple access, communication systems, Detectors, digital communication, digital communications, DS-CDMA systems, Gaussian process for regressi, Gaussian process regressors, Gaussian processes, GPR, Ground penetrating radar, least mean squares methods, maximum likelihood, maximum likelihood detection, maximum likelihood estimation, mean square error methods, minimum mean square error, MMSE, Multiaccess communication, Multiuser detection, nonlinear estimator, nonlinear state-ofthe- art solutions, radio receivers, Receivers, regression analysis, Support vector machines
@article{Murillo-Fuentes2009,
title = {Gaussian Process Regressors for Multiuser Detection in DS-CDMA Systems},
author = {Juan Jose Murillo-Fuentes and Fernando Perez-Cruz},
url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5201027},
issn = {0090-6778},
year = {2009},
date = {2009-01-01},
journal = {IEEE Transactions on Communications},
volume = {57},
number = {8},
pages = {2339--2347},
abstract = {In this paper we present Gaussian processes for Regression (GPR) as a novel detector for CDMA digital communications. Particularly, we propose GPR for constructing analytical nonlinear multiuser detectors in CDMA communication systems. GPR can easily compute the parameters that describe its nonlinearities by maximum likelihood. Thereby, no cross-validation is needed, as it is typically used in nonlinear estimation procedures. The GPR solution is analytical, given its parameters, and it does not need to solve an optimization problem for building the nonlinear estimator. These properties provide fast and accurate learning, two major issues in digital communications. The GPR with a linear decision function can be understood as a regularized MMSE detector, in which the regularization parameter is optimally set. We also show the GPR receiver to be a straightforward nonlinear extension of the linear minimum mean square error (MMSE) criterion, widely used in the design of these receivers. We argue the benefits of this new approach in short codes CDMA systems where little information on the users' codes, users' amplitudes or the channel is available. The paper includes some experiments to show that GPR outperforms linear (MMSE) and nonlinear (SVM) state-ofthe- art solutions.},
keywords = {analytical nonlinear multiuser detectors, code division multiple access, communication systems, Detectors, digital communication, digital communications, DS-CDMA systems, Gaussian process for regressi, Gaussian process regressors, Gaussian processes, GPR, Ground penetrating radar, least mean squares methods, maximum likelihood, maximum likelihood detection, maximum likelihood estimation, mean square error methods, minimum mean square error, MMSE, Multiaccess communication, Multiuser detection, nonlinear estimator, nonlinear state-ofthe- art solutions, radio receivers, Receivers, regression analysis, Support vector machines},
pubstate = {published},
tppubtype = {article}
}