### 2015

Olmos, Pablo M; Mitchell, David G M; Costello, Daniel J

Analyzing the Finite-Length Performance of Generalized LDPC Codes Artículo en actas

En: 2015 IEEE International Symposium on Information Theory (ISIT), pp. 2683–2687, IEEE, Hong Kong, 2015, ISBN: 978-1-4673-7704-1.

Resumen | Enlaces | BibTeX | Etiquetas: BEC, binary codes, binary erasure channel, Block codes, Codes on graphs, Decoding, Differential equations, error probability, finite-length generalized LDPC block codes, finite-length performance analysis, generalized LDPC codes, generalized peeling decoder, GLDPC block codes, graph degree distribution, graph theory, Iterative decoding, parity check codes, protographs

@inproceedings{Olmos2015b,

title = {Analyzing the Finite-Length Performance of Generalized LDPC Codes},

author = {Pablo M Olmos and David G M Mitchell and Daniel J Costello},

url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7282943},

doi = {10.1109/ISIT.2015.7282943},

isbn = {978-1-4673-7704-1},

year = {2015},

date = {2015-06-01},

booktitle = {2015 IEEE International Symposium on Information Theory (ISIT)},

pages = {2683--2687},

publisher = {IEEE},

address = {Hong Kong},

abstract = {In this paper, we analyze the performance of finite-length generalized LDPC (GLDPC) block codes constructed from protographs when transmission takes place over the binary erasure channel (BEC). A generalized peeling decoder is proposed and we derive a system of differential equations that gives the expected evolution of the graph degree distribution during decoding. We then show that the finite-length performance of a GLDPC code can be estimated by means of a simple scaling law, where a single scaling parameter represents the finite-length properties of the code. We also show that, as we consider stronger component codes, both the asymptotic threshold and the finite-length scaling parameter are improved.},

keywords = {BEC, binary codes, binary erasure channel, Block codes, Codes on graphs, Decoding, Differential equations, error probability, finite-length generalized LDPC block codes, finite-length performance analysis, generalized LDPC codes, generalized peeling decoder, GLDPC block codes, graph degree distribution, graph theory, Iterative decoding, parity check codes, protographs},

pubstate = {published},

tppubtype = {inproceedings}

}

### 2013

Salamanca, Luis; Murillo-Fuentes, Juan Jose; Olmos, Pablo M; Perez-Cruz, Fernando

Improving the BP Estimate over the AWGN Channel Using Tree-Structured Expectation Propagation Artículo en actas

En: 2013 IEEE International Symposium on Information Theory, pp. 2990–2994, IEEE, Istanbul, 2013, ISSN: 2157-8095.

Resumen | Enlaces | BibTeX | Etiquetas: Approximation algorithms, Approximation methods, AWGN channels, BEC, belief propagation decoding, BI-AWGN channel, binary additive white Gaussian noise channel, binary erasure channel, BP estimation, Channel Coding, Complexity theory, error rate reduction, error statistics, Expectation, finite-length codes, Iterative decoding, LDPC codes, LDPC decoding, low-density parity-check decoding, Maximum likelihood decoding, parity check codes, posterior distribution, Propagation, TEP algorithm, tree-structured expectation propagation algorithm, trees (mathematics)

@inproceedings{Salamanca2013,

title = {Improving the BP Estimate over the AWGN Channel Using Tree-Structured Expectation Propagation},

author = {Luis Salamanca and Juan Jose Murillo-Fuentes and Pablo M Olmos and Fernando Perez-Cruz},

url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6620774},

issn = {2157-8095},

year = {2013},

date = {2013-01-01},

booktitle = {2013 IEEE International Symposium on Information Theory},

pages = {2990--2994},

publisher = {IEEE},

address = {Istanbul},

abstract = {In this paper, we propose the tree-structured expectation propagation (TEP) algorithm for low-density parity-check (LDPC) decoding over the binary additive white Gaussian noise (BI-AWGN) channel. By approximating the posterior distribution by a tree-structure factorization, the TEP has been proven to improve belief propagation (BP) decoding over the binary erasure channel (BEC). We show for the AWGN channel how the TEP decoder is also able to capture additional information disregarded by the BP solution, which leads to a noticeable reduction of the error rate for finite-length codes. We show that for the range of codes of interest, the TEP gain is obtained with a slight increase in complexity over that of the BP algorithm. An efficient way of constructing the tree-like structure is also described.},

keywords = {Approximation algorithms, Approximation methods, AWGN channels, BEC, belief propagation decoding, BI-AWGN channel, binary additive white Gaussian noise channel, binary erasure channel, BP estimation, Channel Coding, Complexity theory, error rate reduction, error statistics, Expectation, finite-length codes, Iterative decoding, LDPC codes, LDPC decoding, low-density parity-check decoding, Maximum likelihood decoding, parity check codes, posterior distribution, Propagation, TEP algorithm, tree-structured expectation propagation algorithm, trees (mathematics)},

pubstate = {published},

tppubtype = {inproceedings}

}

Olmos, Pablo M; Murillo-Fuentes, Juan Jose; Perez-Cruz, Fernando

Tree-Structure Expectation Propagation for LDPC Decoding Over the BEC Artículo de revista

En: IEEE Transactions on Information Theory, vol. 59, no. 6, pp. 3354–3377, 2013, ISSN: 0018-9448.

Resumen | Enlaces | BibTeX | Etiquetas: Algorithm design and analysis, Approximation algorithms, Approximation methods, BEC, belief propagation, Belief-propagation (BP), binary erasure channel, Complexity theory, decode low-density parity-check codes, Decoding, discrete memoryless channels, expectation propagation, finite-length analysis, LDPC codes, LDPC decoding, parity check codes, peeling-type algorithm, Probability density function, random graph evolution, Tanner graph, tree-structure expectation propagation

@article{Olmos2013b,

title = {Tree-Structure Expectation Propagation for LDPC Decoding Over the BEC},

author = {Pablo M Olmos and Juan Jose Murillo-Fuentes and Fernando Perez-Cruz},

url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6451276},

issn = {0018-9448},

year = {2013},

date = {2013-01-01},

journal = {IEEE Transactions on Information Theory},

volume = {59},

number = {6},

pages = {3354--3377},

abstract = {We present the tree-structure expectation propagation (Tree-EP) algorithm to decode low-density parity-check (LDPC) codes over discrete memoryless channels (DMCs). Expectation propagation generalizes belief propagation (BP) in two ways. First, it can be used with any exponential family distribution over the cliques in the graph. Second, it can impose additional constraints on the marginal distributions. We use this second property to impose pairwise marginal constraints over pairs of variables connected to a check node of the LDPC code's Tanner graph. Thanks to these additional constraints, the Tree-EP marginal estimates for each variable in the graph are more accurate than those provided by BP. We also reformulate the Tree-EP algorithm for the binary erasure channel (BEC) as a peeling-type algorithm (TEP) and we show that the algorithm has the same computational complexity as BP and it decodes a higher fraction of errors. We describe the TEP decoding process by a set of differential equations that represents the expected residual graph evolution as a function of the code parameters. The solution of these equations is used to predict the TEP decoder performance in both the asymptotic regime and the finite-length regimes over the BEC. While the asymptotic threshold of the TEP decoder is the same as the BP decoder for regular and optimized codes, we propose a scaling law for finite-length LDPC codes, which accurately approximates the TEP improved performance and facilitates its optimization.},

keywords = {Algorithm design and analysis, Approximation algorithms, Approximation methods, BEC, belief propagation, Belief-propagation (BP), binary erasure channel, Complexity theory, decode low-density parity-check codes, Decoding, discrete memoryless channels, expectation propagation, finite-length analysis, LDPC codes, LDPC decoding, parity check codes, peeling-type algorithm, Probability density function, random graph evolution, Tanner graph, tree-structure expectation propagation},

pubstate = {published},

tppubtype = {article}

}

Salamanca, Luis; Olmos, Pablo M; Perez-Cruz, Fernando; Murillo-Fuentes, Juan Jose

Tree-Structured Expectation Propagation for LDPC Decoding over BMS Channels Artículo de revista

En: IEEE Transactions on Communications, vol. 61, no. 10, pp. 4086–4095, 2013, ISSN: 0090-6778.

Resumen | Enlaces | BibTeX | Etiquetas: Approximation algorithms, Approximation methods, BEC, belief propagation, binary erasure channel, binary memoryless symmetric channels, BMS channels, Channel Coding, Complexity theory, convolutional codes, convolutional low-density parity-check codes, Decoding, decoding block, expectation propagation, finite-length codes, LDPC decoding, message-passing algorithm, parity check codes, Probability density function, sparse linear codes, TEP algorithm, tree-structured expectation propagation, trees (mathematics), Vegetation

@article{Salamanca2013a,

title = {Tree-Structured Expectation Propagation for LDPC Decoding over BMS Channels},

author = {Luis Salamanca and Pablo M Olmos and Fernando Perez-Cruz and Juan Jose Murillo-Fuentes},

url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6587624},

issn = {0090-6778},

year = {2013},

date = {2013-01-01},

journal = {IEEE Transactions on Communications},

volume = {61},

number = {10},

pages = {4086--4095},

abstract = {In this paper, we put forward the tree-structured expectation propagation (TEP) algorithm for decoding block and convolutional low-density parity-check codes over any binary channel. We have already shown that TEP improves belief propagation (BP) over the binary erasure channel (BEC) by imposing marginal constraints over a set of pairs of variables that form a tree or a forest. The TEP decoder is a message-passing algorithm that sequentially builds a tree/forest of erased variables to capture additional information disregarded by the standard BP decoder, which leads to a noticeable reduction of the error rate for finite-length codes. In this paper, we show how the TEP can be extended to any channel, specifically to binary memoryless symmetric (BMS) channels. We particularly focus on how the TEP algorithm can be adapted for any channel model and, more importantly, how to choose the tree/forest to keep the gains observed for block and convolutional LDPC codes over the BEC.},

keywords = {Approximation algorithms, Approximation methods, BEC, belief propagation, binary erasure channel, binary memoryless symmetric channels, BMS channels, Channel Coding, Complexity theory, convolutional codes, convolutional low-density parity-check codes, Decoding, decoding block, expectation propagation, finite-length codes, LDPC decoding, message-passing algorithm, parity check codes, Probability density function, sparse linear codes, TEP algorithm, tree-structured expectation propagation, trees (mathematics), Vegetation},

pubstate = {published},

tppubtype = {article}

}

Salamanca, Luis; Olmos, Pablo M; Murillo-Fuentes, Juan Jose; Perez-Cruz, Fernando

Tree Expectation Propagation for ML Decoding of LDPC Codes over the BEC Artículo de revista

En: IEEE Transactions on Communications, vol. 61, no. 2, pp. 465–473, 2013, ISSN: 0090-6778.

Resumen | Enlaces | BibTeX | Etiquetas: approximate inference, Approximation algorithms, Approximation methods, BEC, binary codes, binary erasure channel, code graph, Complexity theory, equivalent complexity, Gaussian elimination method, Gaussian processes, generalized tree-structured expectation propagatio, graphical message-passing procedure, graphical models, LDPC codes, Maximum likelihood decoding, maximum likelihood solution, ML decoding, parity check codes, peeling decoder, tree expectation propagation, tree graph, Tree graphs, tree-structured expectation propagation, tree-structured expectation propagation decoder, trees (mathematics)

@article{Salamanca2013b,

title = {Tree Expectation Propagation for ML Decoding of LDPC Codes over the BEC},

author = {Luis Salamanca and Pablo M Olmos and Juan Jose Murillo-Fuentes and Fernando Perez-Cruz},

url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6384612},

issn = {0090-6778},

year = {2013},

date = {2013-01-01},

journal = {IEEE Transactions on Communications},

volume = {61},

number = {2},

pages = {465--473},

abstract = {We propose a decoding algorithm for LDPC codes that achieves the maximum likelihood (ML) solution over the binary erasure channel (BEC). In this channel, the tree-structured expectation propagation (TEP) decoder improves the peeling decoder (PD) by processing check nodes of degree one and two. However, it does not achieve the ML solution, as the tree structure of the TEP allows only for approximate inference. In this paper, we provide the procedure to construct the structure needed for exact inference. This algorithm, denoted as generalized tree-structured expectation propagation (GTEP), modifies the code graph by recursively eliminating any check node and merging this information in the remaining graph. The GTEP decoder upon completion either provides the unique ML solution or a tree graph in which the number of parent nodes indicates the multiplicity of the ML solution. We also explain the algorithm as a Gaussian elimination method, relating the GTEP to other ML solutions. Compared to previous approaches, it presents an equivalent complexity, it exhibits a simpler graphical message-passing procedure and, most interesting, the algorithm can be generalized to other channels.},

keywords = {approximate inference, Approximation algorithms, Approximation methods, BEC, binary codes, binary erasure channel, code graph, Complexity theory, equivalent complexity, Gaussian elimination method, Gaussian processes, generalized tree-structured expectation propagatio, graphical message-passing procedure, graphical models, LDPC codes, Maximum likelihood decoding, maximum likelihood solution, ML decoding, parity check codes, peeling decoder, tree expectation propagation, tree graph, Tree graphs, tree-structured expectation propagation, tree-structured expectation propagation decoder, trees (mathematics)},

pubstate = {published},

tppubtype = {article}

}

### 2012

Olmos, Pablo M; Perez-Cruz, Fernando; Salamanca, Luis; Murillo-Fuentes, Juan Jose

Finite-Length Analysis of the TEP Decoder for LDPC Ensembles over the BEC Artículo en actas

En: 2012 IEEE International Symposium on Information Theory Proceedings, pp. 2346–2350, IEEE, Cambridge, MA, 2012, ISSN: 2157-8095.

Resumen | Enlaces | BibTeX | Etiquetas: Approximation methods, BEC, binary codes, binary erasure channel, Decoding, Error analysis, error probability, finite-length analysis, LDPC ensembles, low-density parity check ensembles, parity check codes, TEP decoder, Trajectory, tree-expectation propagation algorithm, waterfall region

@inproceedings{Olmos2012a,

title = {Finite-Length Analysis of the TEP Decoder for LDPC Ensembles over the BEC},

author = {Pablo M Olmos and Fernando Perez-Cruz and Luis Salamanca and Juan Jose Murillo-Fuentes},

url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6283932},

issn = {2157-8095},

year = {2012},

date = {2012-01-01},

booktitle = {2012 IEEE International Symposium on Information Theory Proceedings},

pages = {2346--2350},

publisher = {IEEE},

address = {Cambridge, MA},

abstract = {In this work, we analyze the finite-length performance of low-density parity check (LDPC) ensembles decoded over the binary erasure channel (BEC) using the tree-expectation propagation (TEP) algorithm. In a previous paper, we showed that the TEP improves the BP performance for decoding regular and irregular short LDPC codes, but the perspective was mainly empirical. In this work, given the degree-distribution of an LDPC ensemble, we explain and predict the range of code lengths for which the TEP improves the BP solution. In addition, for LDPC ensembles that present a single critical point, we propose a scaling law to accurately predict the performance in the waterfall region. These results are of critical importance to design practical LDPC codes for the TEP decoder.},

keywords = {Approximation methods, BEC, binary codes, binary erasure channel, Decoding, Error analysis, error probability, finite-length analysis, LDPC ensembles, low-density parity check ensembles, parity check codes, TEP decoder, Trajectory, tree-expectation propagation algorithm, waterfall region},

pubstate = {published},

tppubtype = {inproceedings}

}

### 2011

Olmos, Pablo M; Urbanke, Rudiger

Scaling Behavior of Convolutional LDPC Ensembles over the BEC Artículo en actas

En: 2011 IEEE International Symposium on Information Theory Proceedings, pp. 1816–1820, IEEE, Saint Petersburg, 2011, ISSN: 2157-8095.

Resumen | Enlaces | BibTeX | Etiquetas: BEC, binary codes, binary erasure channel, Bit error rate, convolutional codes, convolutional LDPC ensembles, coupled sparse graph codes, Couplings, Decoding, error probability, Iterative decoding, parity check codes, scaling behavior

@inproceedings{Olmos2011,

title = {Scaling Behavior of Convolutional LDPC Ensembles over the BEC},

author = {Pablo M Olmos and Rudiger Urbanke},

url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6033863},

issn = {2157-8095},

year = {2011},

date = {2011-01-01},

booktitle = {2011 IEEE International Symposium on Information Theory Proceedings},

pages = {1816--1820},

publisher = {IEEE},

address = {Saint Petersburg},

abstract = {We study the scaling behavior of coupled sparse graph codes over the binary erasure channel. In particular, let 2L+1 be the length of the coupled chain, let M be the number of variables in each of the 2L+1 local copies, let ℓ be the number of iterations, let Pb denote the bit error probability, and let ∈ denote the channel parameter. We are interested in how these quantities scale when we let the blocklength (2L + 1)M tend to infinity. Based on empirical evidence we show that the threshold saturation phenomenon is rather stable with respect to the scaling of the various parameters and we formulate some general rules of thumb which can serve as a guide for the design of coding systems based on coupled graphs.},

keywords = {BEC, binary codes, binary erasure channel, Bit error rate, convolutional codes, convolutional LDPC ensembles, coupled sparse graph codes, Couplings, Decoding, error probability, Iterative decoding, parity check codes, scaling behavior},

pubstate = {published},

tppubtype = {inproceedings}

}