2015
Olmos, Pablo M; Mitchell, David G M; Costello, Daniel J
Analyzing the Finite-Length Performance of Generalized LDPC Codes Artículo en actas
En: 2015 IEEE International Symposium on Information Theory (ISIT), pp. 2683–2687, IEEE, Hong Kong, 2015, ISBN: 978-1-4673-7704-1.
Resumen | Enlaces | BibTeX | Etiquetas: BEC, binary codes, binary erasure channel, Block codes, Codes on graphs, Decoding, Differential equations, error probability, finite-length generalized LDPC block codes, finite-length performance analysis, generalized LDPC codes, generalized peeling decoder, GLDPC block codes, graph degree distribution, graph theory, Iterative decoding, parity check codes, protographs
@inproceedings{Olmos2015b,
title = {Analyzing the Finite-Length Performance of Generalized LDPC Codes},
author = {Pablo M Olmos and David G M Mitchell and Daniel J Costello},
url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7282943},
doi = {10.1109/ISIT.2015.7282943},
isbn = {978-1-4673-7704-1},
year = {2015},
date = {2015-06-01},
booktitle = {2015 IEEE International Symposium on Information Theory (ISIT)},
pages = {2683--2687},
publisher = {IEEE},
address = {Hong Kong},
abstract = {In this paper, we analyze the performance of finite-length generalized LDPC (GLDPC) block codes constructed from protographs when transmission takes place over the binary erasure channel (BEC). A generalized peeling decoder is proposed and we derive a system of differential equations that gives the expected evolution of the graph degree distribution during decoding. We then show that the finite-length performance of a GLDPC code can be estimated by means of a simple scaling law, where a single scaling parameter represents the finite-length properties of the code. We also show that, as we consider stronger component codes, both the asymptotic threshold and the finite-length scaling parameter are improved.},
keywords = {BEC, binary codes, binary erasure channel, Block codes, Codes on graphs, Decoding, Differential equations, error probability, finite-length generalized LDPC block codes, finite-length performance analysis, generalized LDPC codes, generalized peeling decoder, GLDPC block codes, graph degree distribution, graph theory, Iterative decoding, parity check codes, protographs},
pubstate = {published},
tppubtype = {inproceedings}
}
In this paper, we analyze the performance of finite-length generalized LDPC (GLDPC) block codes constructed from protographs when transmission takes place over the binary erasure channel (BEC). A generalized peeling decoder is proposed and we derive a system of differential equations that gives the expected evolution of the graph degree distribution during decoding. We then show that the finite-length performance of a GLDPC code can be estimated by means of a simple scaling law, where a single scaling parameter represents the finite-length properties of the code. We also show that, as we consider stronger component codes, both the asymptotic threshold and the finite-length scaling parameter are improved.