## 2013 |

Koch, Tobias; Kramer, Gerhard On Noncoherent Fading Relay Channels at High Signal-to-Noise Ratio Journal Article IEEE Transactions on Information Theory, 59 (4), pp. 2221–2241, 2013, ISSN: 0018-9448. Abstract | Links | BibTeX | Tags: channel capacity, Channel models, Fading, fading channels, MIMO communication, multiple-input single-output fading channel statis, noncoherent, noncoherent fading relay channel capacity, radio receiver, radio receivers, radio transmitter, radio transmitters, Receivers, relay channels, relay networks (telecommunication), Relays, Signal to noise ratio, signal-to-noise ratio, SNR, statistics, time selective, Transmitters, Upper bound @article{Koch2013a, title = {On Noncoherent Fading Relay Channels at High Signal-to-Noise Ratio}, author = {Tobias Koch and Gerhard Kramer}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6378474}, issn = {0018-9448}, year = {2013}, date = {2013-01-01}, journal = {IEEE Transactions on Information Theory}, volume = {59}, number = {4}, pages = {2221--2241}, abstract = {The capacity of noncoherent regular-fading relay channels is studied where all terminals are aware of the fading statistics but not of their realizations. It is shown that if the fading coefficient of the channel between the transmitter and the receiver can be predicted more accurately from its infinite past than the fading coefficient of the channel between the relay and the receiver, then at high signal-to-noise ratio (SNR), the relay does not increase capacity. It is further shown that if the fading coefficient of the channel between the transmitter and the relay can be predicted more accurately from its infinite past than the fading coefficient of the channel between the relay and the receiver, then at high SNR, one can achieve communication rates that are within one bit of the capacity of the multiple-input single-output fading channel that results when the transmitter and the relay can cooperate.}, keywords = {channel capacity, Channel models, Fading, fading channels, MIMO communication, multiple-input single-output fading channel statis, noncoherent, noncoherent fading relay channel capacity, radio receiver, radio receivers, radio transmitter, radio transmitters, Receivers, relay channels, relay networks (telecommunication), Relays, Signal to noise ratio, signal-to-noise ratio, SNR, statistics, time selective, Transmitters, Upper bound}, pubstate = {published}, tppubtype = {article} } The capacity of noncoherent regular-fading relay channels is studied where all terminals are aware of the fading statistics but not of their realizations. It is shown that if the fading coefficient of the channel between the transmitter and the receiver can be predicted more accurately from its infinite past than the fading coefficient of the channel between the relay and the receiver, then at high signal-to-noise ratio (SNR), the relay does not increase capacity. It is further shown that if the fading coefficient of the channel between the transmitter and the relay can be predicted more accurately from its infinite past than the fading coefficient of the channel between the relay and the receiver, then at high SNR, one can achieve communication rates that are within one bit of the capacity of the multiple-input single-output fading channel that results when the transmitter and the relay can cooperate. |

## 2010 |

Koch, Tobias; Lapidoth, Amos Gaussian Fading Is the Worst Fading Journal Article IEEE Transactions on Information Theory, 56 (3), pp. 1158–1165, 2010, ISSN: 0018-9448. Abstract | Links | BibTeX | Tags: Additive noise, channel capacity, channels with memory, Distribution functions, ergodic fading processes, Fading, fading channels, flat fading, flat-fading channel capacity, Gaussian channels, Gaussian fading, Gaussian processes, H infinity control, high signal-to-noise ratio (SNR), Information technology, information theory, multiple-input single-output fading channels, multiplexing gain, noncoherent, noncoherent channel capacity, peak-power limited channel capacity, Signal to noise ratio, signal-to-noise ratio, single-antenna channel capacity, spectral distribution function, time-selective, Transmitters @article{Koch2010a, title = {Gaussian Fading Is the Worst Fading}, author = {Tobias Koch and Amos Lapidoth}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5429105}, issn = {0018-9448}, year = {2010}, date = {2010-01-01}, journal = {IEEE Transactions on Information Theory}, volume = {56}, number = {3}, pages = {1158--1165}, abstract = {The capacity of peak-power limited, single-antenna, noncoherent, flat-fading channels with memory is considered. The emphasis is on the capacity pre-log, i.e., on the limiting ratio of channel capacity to the logarithm of the signal-to-noise ratio (SNR), as the SNR tends to infinity. It is shown that, among all stationary and ergodic fading processes of a given spectral distribution function and whose law has no mass point at zero, the Gaussian process gives rise to the smallest pre-log. The assumption that the law of the fading process has no mass point at zero is essential in the sense that there exist stationary and ergodic fading processes whose law has a mass point at zero and that give rise to a smaller pre-log than the Gaussian process of equal spectral distribution function. An extension of these results to multiple-input single-output (MISO) fading channels with memory is also presented.}, keywords = {Additive noise, channel capacity, channels with memory, Distribution functions, ergodic fading processes, Fading, fading channels, flat fading, flat-fading channel capacity, Gaussian channels, Gaussian fading, Gaussian processes, H infinity control, high signal-to-noise ratio (SNR), Information technology, information theory, multiple-input single-output fading channels, multiplexing gain, noncoherent, noncoherent channel capacity, peak-power limited channel capacity, Signal to noise ratio, signal-to-noise ratio, single-antenna channel capacity, spectral distribution function, time-selective, Transmitters}, pubstate = {published}, tppubtype = {article} } The capacity of peak-power limited, single-antenna, noncoherent, flat-fading channels with memory is considered. The emphasis is on the capacity pre-log, i.e., on the limiting ratio of channel capacity to the logarithm of the signal-to-noise ratio (SNR), as the SNR tends to infinity. It is shown that, among all stationary and ergodic fading processes of a given spectral distribution function and whose law has no mass point at zero, the Gaussian process gives rise to the smallest pre-log. The assumption that the law of the fading process has no mass point at zero is essential in the sense that there exist stationary and ergodic fading processes whose law has a mass point at zero and that give rise to a smaller pre-log than the Gaussian process of equal spectral distribution function. An extension of these results to multiple-input single-output (MISO) fading channels with memory is also presented. |

Koch, Tobias; Lapidoth, Amos On Multipath Fading Channels at High SNR Journal Article IEEE Transactions on Information Theory, 56 (12), pp. 5945–5957, 2010, ISSN: 0018-9448. Abstract | Links | BibTeX | Tags: approximation theory, capacity pre-loglog, capacity to loglog, channel capacity, channels with memory, Delay, Fading, fading channels, frequency-selective fading, high signal-to-noise ratio, high SNR, Limiting, multipath, multipath channels, noncoherent, noncoherent multipath fading channel, Receivers, Signal to noise ratio, signal-to-noise ratio, Transmitters @article{Koch2010b, title = {On Multipath Fading Channels at High SNR}, author = {Tobias Koch and Amos Lapidoth}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5625630}, issn = {0018-9448}, year = {2010}, date = {2010-01-01}, journal = {IEEE Transactions on Information Theory}, volume = {56}, number = {12}, pages = {5945--5957}, abstract = {A noncoherent multipath fading channel is considered, where neither the transmitter nor the receiver is cognizant of the realization of the path gains, but both are cognizant of their statistics. It is shown that if the delay spread is large in the sense that the variances of the path gains decay exponentially or slower, then capacity is bounded in the signal-to-noise ratio (SNR). For such channels, capacity does not tend to infinity as the SNR tends to infinity. In contrast, if the variances of the path gains decay faster than exponentially, then capacity is unbounded in the SNR. It is further demonstrated that if the number of paths is finite, then at high SNR capacity grows double-logarithmically with the SNR, and the capacity pre-loglog-defined as the limiting ratio of capacity to loglog(SNR) as the SNR tends to infinity-is 1 irrespective of the number of paths. The results demonstrate that at high SNR multipath fading channels with an infinite number of paths cannot be approximated by multipath fading channels with only a finite number of paths. The number of paths that are needed to approximate a multipath fading channel typically depends on the SNR and may grow to infinity as the SNR tends to infinity.}, keywords = {approximation theory, capacity pre-loglog, capacity to loglog, channel capacity, channels with memory, Delay, Fading, fading channels, frequency-selective fading, high signal-to-noise ratio, high SNR, Limiting, multipath, multipath channels, noncoherent, noncoherent multipath fading channel, Receivers, Signal to noise ratio, signal-to-noise ratio, Transmitters}, pubstate = {published}, tppubtype = {article} } A noncoherent multipath fading channel is considered, where neither the transmitter nor the receiver is cognizant of the realization of the path gains, but both are cognizant of their statistics. It is shown that if the delay spread is large in the sense that the variances of the path gains decay exponentially or slower, then capacity is bounded in the signal-to-noise ratio (SNR). For such channels, capacity does not tend to infinity as the SNR tends to infinity. In contrast, if the variances of the path gains decay faster than exponentially, then capacity is unbounded in the SNR. It is further demonstrated that if the number of paths is finite, then at high SNR capacity grows double-logarithmically with the SNR, and the capacity pre-loglog-defined as the limiting ratio of capacity to loglog(SNR) as the SNR tends to infinity-is 1 irrespective of the number of paths. The results demonstrate that at high SNR multipath fading channels with an infinite number of paths cannot be approximated by multipath fading channels with only a finite number of paths. The number of paths that are needed to approximate a multipath fading channel typically depends on the SNR and may grow to infinity as the SNR tends to infinity. |

## 2008 |

Koch, Tobias; Lapidoth, Amos Multipath Channels of Unbounded Capacity Inproceedings 2008 IEEE 25th Convention of Electrical and Electronics Engineers in Israel, pp. 640–644, IEEE, Eilat, 2008, ISBN: 978-1-4244-2481-8. Abstract | Links | BibTeX | Tags: channel capacity, discrete-time capacity, Entropy, Fading, fading channels, Frequency, H infinity control, Information rates, multipath channels, multipath fading channels, noncoherent, noncoherent capacity, path gains decay, Signal to noise ratio, statistics, Transmitters, unbounded capacity @inproceedings{Koch2008b, title = {Multipath Channels of Unbounded Capacity}, author = {Tobias Koch and Amos Lapidoth}, url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=4736611}, isbn = {978-1-4244-2481-8}, year = {2008}, date = {2008-01-01}, booktitle = {2008 IEEE 25th Convention of Electrical and Electronics Engineers in Israel}, pages = {640--644}, publisher = {IEEE}, address = {Eilat}, abstract = {The capacity of discrete-time, noncoherent, multipath fading channels is considered. It is shown that if the variances of the path gains decay faster than exponentially, then capacity is unbounded in the transmit power.}, keywords = {channel capacity, discrete-time capacity, Entropy, Fading, fading channels, Frequency, H infinity control, Information rates, multipath channels, multipath fading channels, noncoherent, noncoherent capacity, path gains decay, Signal to noise ratio, statistics, Transmitters, unbounded capacity}, pubstate = {published}, tppubtype = {inproceedings} } The capacity of discrete-time, noncoherent, multipath fading channels is considered. It is shown that if the variances of the path gains decay faster than exponentially, then capacity is unbounded in the transmit power. |